Content
-
import sys,os
base_dir = '/u/home/abzoghbi/data/ngc4151/spec_analysis'
sys.path.append(base_dir)
from spec_helpers import *
%load_ext autoreload
%autoreload 2
### Read useful data from data notebook
data_dir = 'data/xmm'
spec_dir = 'data/xmm_spec'
os.chdir('%s/%s'%(base_dir, data_dir))
data = np.load('log/data.npz')
spec_obsids = data['spec_obsids']
obsids = data['obsids']
spec_data = data['spec_data']
spec_ids = [i+1 for i,o in enumerate(obsids) if o in spec_obsids]
Redo the main fit (fit_4c) and include errors of the two strongest lines: fit_4e
os.chdir('%s/%s'%(base_dir, spec_dir))
suff = '4e'
fit_4e = fit_xspec_model('fit_%s'%suff, spec_ids, base_dir)
# plot the result #
par_names = ['xl_nh', 'xl_xi', 'xh_nh', 'xh_xi', 'nh', 'cf', 'pflx', 'gam', 'xflx',
'bT', 'bnrm', 'g5e', 'g5nrm', 'g9e', 'g9nrm']
fit = fit_4e
fig = plt.figure(figsize=(12,7))
idx = [0,1,2,3,4,5,7,8,9,10,11,12,13,14]; iref = 6
for i,ix in enumerate(idx):
ax = plt.subplot(3,len(idx)//3+1,i+1)
plt.errorbar(fit[:,iref,0], fit[:,ix,0], fit[:,ix,1], xerr=fit[:,iref,1],
fmt='o', ms=8, lw=0.5)
ax.set_xlabel(par_names[iref]); ax.set_ylabel(par_names[ix])
plt.tight_layout(pad=0)
x,xe = fit[:,iref,0], fit[:,iref,1]
y,ye = fit[:,1,0], fit[:,1,1]
plt.errorbar(x,y,yerr=ye, fmt='o', ms=8, lw=0.5)
<ErrorbarContainer object of 3 artists>
Estimate the PSDs
Do it for the powerlaw flux. Compare bending powerlaw to 0-centered lorentzian. The latter can be used to fit the other parameters, for which the former cannot be constrained. The bend frequency and lorentzian width are different, so we obtain some calibration factor so for other lorentzian fit, we use it to scale to the commonly used break frequency
fit = fit_4e
ipar = 6
xtime = spec_data[:,0]
param = fit[:,ipar,:2]
isort = np.argsort(xtime)
xtime, param = xtime[isort], param[isort,:].T
fqL = [0.1/(xtime[-1]-xtime[0]), 2./np.diff(xtime).min()]
# bending powerlaw
pm_bpl = plag.PLag('psdf', [xtime], [param[0]], [param[1]], 0.1, fqL, 'rms', 0, 2)
p0 = [-9.4,-2, -3.6]
par_bpl = plag.optimize(pm_bpl, p0)[0]
# 0-centered lorentzian
pm_l0 = plag.PLag('psdf', [xtime], [param[0]], [param[1]], 0.1, fqL, 'rms', 0, 4)
p0 = [-5,-4.]
par_l0 = plag.optimize(pm_l0, p0)[0]
scale_shift = par_bpl[2] - par_l0[1]
print('scale shift: %g'%scale_shift)
# so we have: break = lore_width + scale_shift
1 3.026e-01 3.703e+00 inf | 1.020e+01 | -9.4 -2 -3.6
2 1.305e-01 1.951e+00 3.116e-01 | 1.051e+01 | -9.24 -2.46 -2.51
3 3.142e-02 2.861e-01 3.427e-01 | 1.085e+01 | -9.25 -2.44 -2.84
4 7.469e-03 1.274e-02 7.924e-03 | 1.086e+01 | -9.24 -2.42 -2.93
5 1.545e-03 4.994e-03 1.716e-04 | 1.086e+01 | -9.23 -2.4 -2.95
6 3.114e-04 4.340e-04 7.495e-06 | 1.086e+01 | -9.23 -2.4 -2.95
********************
-9.22946 -2.40171 -2.9538
0.572789 0.893383 1.35897
-0.000117633 0.000179097 -0.000433978
********************
1 1.637e-01 9.314e+00 inf | -7.170e-01 | -5 -4
2 1.007e-01 7.093e+00 7.107e+00 | 6.390e+00 | -5.82 -4.06
3 4.256e-02 3.628e+00 3.651e+00 | 1.004e+01 | -6.4 -4.19
4 2.749e-02 8.256e-01 8.487e-01 | 1.089e+01 | -6.65 -4.37
5 8.265e-03 1.323e-01 6.134e-02 | 1.095e+01 | -6.66 -4.49
6 1.919e-03 2.545e-02 2.535e-03 | 1.095e+01 | -6.65 -4.53
7 4.407e-04 5.682e-03 1.308e-04 | 1.095e+01 | -6.65 -4.54
8 1.014e-04 1.299e-03 6.910e-06 | 1.095e+01 | -6.65 -4.54
********************
-6.64514 -4.53801
0.434769 0.596516
-1.14667e-05 -0.00129888
********************
scale shift: 1.5842
import emcee
def lnprob(x, mod):
if x[0] < -11 or x[1]<-11: return -np.inf
if x[0] >1.7 or x[1]>1.7: return -np.inf
return mod.logLikelihood(x)
def get_time_scale(ipar, use_opt=True):
# ipar is the index in fit array
xtime = spec_data[:,0]
if isinstance(ipar, list):
param = fit[:,ipar[0],:2]
for i in ipar[1:]:
param[:,0] += fit[:,ipar[i],0]
param[:,1] = (param[:,1]**2 + fit[:,ipar[i],1]**2)**0.5
else:
param = fit[:,ipar,:2]
isort = np.argsort(xtime)
xtime, param = xtime[isort], param[isort,:].T
pm_l0 = plag.PLag('psdf', [xtime], [param[0]], [param[1]], 0.1, fqL, 'rms', 0, 4)
p0 = [-5,-4.]
p,pe = plag.optimize(pm_l0, p0)[:2]
# mcmc #
ndim, nwalkers = 2, 100
if not use_opt:
p = np.array([-2., -4])
pe = np.array([0.1, 0.1])
p0 = [np.random.rand(ndim)*pe+p for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[pm_l0])
_ = sampler.run_mcmc(p0, 1000)
chains = sampler.flatchain[len(sampler.flatchain)//2:]
return chains
# powerlaw flux #
hist = {}
ipar = 6
chains = get_time_scale(ipar)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 1.637e-01 9.314e+00 inf | -7.170e-01 | -5 -4
2 1.007e-01 7.093e+00 7.107e+00 | 6.390e+00 | -5.82 -4.06
3 4.256e-02 3.628e+00 3.651e+00 | 1.004e+01 | -6.4 -4.19
4 2.749e-02 8.256e-01 8.487e-01 | 1.089e+01 | -6.65 -4.37
5 8.265e-03 1.323e-01 6.134e-02 | 1.095e+01 | -6.66 -4.49
6 1.919e-03 2.545e-02 2.535e-03 | 1.095e+01 | -6.65 -4.53
7 4.407e-04 5.682e-03 1.308e-04 | 1.095e+01 | -6.65 -4.54
8 1.014e-04 1.299e-03 6.910e-06 | 1.095e+01 | -6.65 -4.54
********************
-6.64514 -4.53801
0.434769 0.596516
-1.14667e-05 -0.00129888
********************
# xillver flux #
ipar = 8
chains = get_time_scale(ipar)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 1.977e-01 1.068e+01 inf | -1.712e+00 | -5 -4
2 1.619e-01 1.018e+01 1.025e+01 | 8.537e+00 | -5.99 -3.98
3 1.324e-01 9.077e+00 9.185e+00 | 1.772e+01 | -6.96 -3.93
4 1.022e-01 7.087e+00 7.165e+00 | 2.489e+01 | -7.88 -3.8
5 8.115e-02 4.352e+00 4.332e+00 | 2.922e+01 | -8.68 -3.58
6 7.104e-02 1.665e+00 1.649e+00 | 3.087e+01 | -9.26 -3.29
7 4.090e-02 2.357e-01 2.791e-01 | 3.115e+01 | -9.52 -3.05
8 2.141e-02 1.319e-01 2.707e-02 | 3.117e+01 | -9.59 -2.93
9 1.167e-02 7.228e-02 6.106e-03 | 3.118e+01 | -9.6 -2.87
10 6.431e-03 3.931e-02 1.764e-03 | 3.118e+01 | -9.61 -2.83
11 3.549e-03 2.152e-02 5.238e-04 | 3.118e+01 | -9.61 -2.82
12 1.960e-03 1.183e-02 1.575e-04 | 3.118e+01 | -9.61 -2.81
13 1.082e-03 6.517e-03 4.770e-05 | 3.118e+01 | -9.61 -2.8
********************
-9.61488 -2.79961
0.387752 0.708842
0.00187241 0.00651705
********************
# neutral nh #
ipar = 4
chains = get_time_scale(ipar)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 7.280e+01 7.717e+02 inf | -8.979e+02 | -5 -4
2 7.995e+00 1.061e+02 7.280e+02 | -1.698e+02 | -3 -6
3 2.974e+00 2.950e+01 7.013e+01 | -9.971e+01 | -1 -8
4 5.483e-01 5.918e+00 3.517e+01 | -6.455e+01 | 1 -6
5 4.811e-01 2.500e+00 2.460e+00 | -6.209e+01 | 0.452 -6.03
6 1.074e-01 4.645e-01 3.799e-01 | -6.171e+01 | 0.234 -6.08
7 6.397e-03 4.865e-02 1.405e-02 | -6.169e+01 | 0.209 -6.12
8 2.084e-03 6.166e-03 2.254e-04 | -6.169e+01 | 0.211 -6.12
9 3.243e-04 8.187e-04 4.012e-06 | -6.169e+01 | 0.211 -6.13
********************
0.211003 -6.1263
0.498517 0.635167
-0.000526084 -0.000818706
********************
# xi_l nh #
ipar = 0
chains = get_time_scale(ipar)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 6.918e+00 6.577e+01 inf | -1.981e+02 | -5 -4
2 2.060e+00 3.353e+01 1.274e+02 | -7.072e+01 | -3 -2
3 inf 2.297e+00 2.478e+01 | -4.594e+01 | -1 0
4 1.429e+00 3.119e-01 3.158e-01 | -4.562e+01 | -1.24 -0.0543
5 5.603e-01 1.961e-02 6.727e-03 | -4.562e+01 | -1.28 -0.132
6 3.602e-01 2.202e-02 1.535e-03 | -4.561e+01 | -1.29 -0.206
7 2.876e-01 2.623e-02 1.775e-03 | -4.561e+01 | -1.29 -0.28
8 2.550e-01 3.301e-02 2.372e-03 | -4.561e+01 | -1.3 -0.36
9 2.359e-01 4.276e-02 3.474e-03 | -4.561e+01 | -1.3 -0.452
10 2.153e-01 5.476e-02 5.217e-03 | -4.560e+01 | -1.31 -0.559
11 1.817e-01 6.490e-02 7.273e-03 | -4.559e+01 | -1.31 -0.679
12 1.334e-01 6.538e-02 8.187e-03 | -4.559e+01 | -1.31 -0.802
13 8.311e-02 5.246e-02 6.444e-03 | -4.558e+01 | -1.31 -0.909
14 4.512e-02 3.368e-02 3.310e-03 | -4.558e+01 | -1.31 -0.985
15 2.249e-02 1.845e-02 1.170e-03 | -4.557e+01 | -1.31 -1.03
16 1.072e-02 9.231e-03 3.218e-04 | -4.557e+01 | -1.31 -1.05
17 5.005e-03 4.411e-03 7.707e-05 | -4.557e+01 | -1.31 -1.06
********************
-1.31356 -1.0638
0.326303 1.10023
-0.000528733 -0.00441064
********************
/u/home/abzoghbi/soft/etc/python/plag/plag.py:545: RuntimeWarning: divide by zero encountered in true_divide
absmax = np.max(np.abs(dpar/tmpp))
# xi_l xi #
ipar = 1
chains = get_time_scale(ipar, use_opt=False)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 4.930e+01 4.911e+01 inf | -2.813e+02 | -5 -4
2 8.638e+00 5.497e+01 1.103e+02 | -1.711e+02 | -3 -2
3 inf 2.616e+01 1.285e+02 | -4.257e+01 | -1 0
4 3.413e+01 4.926e-01 1.895e+01 | -2.362e+01 | 1 2
5 5.654e+02 2.192e+00 -2.692e-01 | -2.389e+01 | 3 4
6 1.773e+04 2.265e+00 -2.046e-02 | -2.391e+01 | 5 6
7 6.796e+05 2.267e+00 -3.868e-04 | -2.391e+01 | 7 8
8 7.067e+05 2.267e+00 -7.088e-06 | -2.391e+01 | 9 10
********************
9 10
2.37266e+07 2.37266e+07
-2.26664 2.26664
********************
# xi_h nh #
ipar = 2
chains = get_time_scale(ipar, use_opt=True)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 4.956e+01 2.095e+02 inf | -3.836e+02 | -5 -4
2 1.858e+01 6.386e+01 2.455e+02 | -1.381e+02 | -3 -2
3 2.219e+00 7.147e+00 6.263e+01 | -7.548e+01 | -1 -4
4 5.446e-01 2.801e+00 3.156e+00 | -7.233e+01 | 1 -6
5 4.852e-01 9.756e-01 1.123e+00 | -7.121e+01 | 0.455 -6.12
6 1.003e-01 9.859e-02 1.264e-01 | -7.108e+01 | 0.234 -6.17
7 2.271e-03 1.308e-03 1.205e-03 | -7.108e+01 | 0.211 -6.17
8 1.881e-04 1.777e-04 5.056e-07 | -7.108e+01 | 0.211 -6.17
********************
0.21141 -6.17164
0.548277 1.12758
-1.7852e-05 -0.000177658
********************
# xi_h xi #
ipar = 3
chains = get_time_scale(ipar, use_opt=False)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 1.031e+00 1.233e+01 inf | -3.671e+01 | -5 -4
2 1.662e-01 9.818e-01 1.067e+01 | -2.604e+01 | -3 -4.34
3 1.669e-01 8.963e-01 6.164e-01 | -2.543e+01 | -3.13 -3.62
4 2.358e-01 9.924e-01 5.412e-01 | -2.489e+01 | -3.16 -3.02
5 4.553e-01 1.224e+00 7.806e-01 | -2.411e+01 | -3.18 -2.31
6 1.660e+00 1.123e+00 1.283e+00 | -2.282e+01 | -3.2 -1.26
7 2.060e+00 4.153e-01 9.244e-01 | -2.190e+01 | -3.17 0.744
8 5.270e+00 1.583e+00 -6.401e-01 | -2.254e+01 | -3.43 -0.788
9 1.840e+01 1.474e-01 6.401e-01 | -2.190e+01 | -3.02 1.21
10 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
11 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
12 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
13 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
14 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
15 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
16 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
17 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
18 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
19 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
20 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
21 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
22 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
23 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
24 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
25 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
26 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
27 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
28 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
29 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
30 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
31 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
32 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
33 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
34 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
35 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
36 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
37 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
38 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
39 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
40 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
41 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
42 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
43 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
44 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
45 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
46 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
47 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
48 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
49 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
50 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
51 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
52 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
53 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
54 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
55 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
56 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
57 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
58 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
59 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
60 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
61 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
62 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
63 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
64 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
65 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
66 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
67 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
68 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
69 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
70 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
71 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
72 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
73 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
74 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
75 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
76 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
77 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
78 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
79 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
80 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
81 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
82 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
83 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
84 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
85 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
86 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
87 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
88 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
89 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
90 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
91 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
92 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
93 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
94 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
95 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
96 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
97 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
98 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
99 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
100 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
101 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
102 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
103 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
104 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
105 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
106 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
107 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
108 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
109 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
110 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
111 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
112 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
113 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
114 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
115 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
116 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
117 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
118 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
119 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
120 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
121 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
122 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
123 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
124 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
125 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
126 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
127 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
128 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
129 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
130 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
131 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
132 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
133 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
134 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
135 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
136 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
137 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
138 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
139 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
140 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
141 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
142 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
143 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
144 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
145 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
146 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
147 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
148 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
149 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
150 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
151 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
152 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
153 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
154 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
155 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
156 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
157 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
158 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
159 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
160 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
161 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
162 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
163 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
164 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
165 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
166 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
167 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
168 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
169 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
170 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
171 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
172 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
173 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
174 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
175 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
176 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
177 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
178 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
179 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
180 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
181 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
182 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
183 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
184 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
185 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
186 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
187 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
188 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
189 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
190 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
191 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
192 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
193 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
194 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
195 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
196 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
197 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
198 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
199 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
200 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
201 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
202 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
203 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
204 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
205 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
206 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
207 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
208 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
209 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
210 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
211 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
212 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
213 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
214 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
215 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
216 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
217 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
218 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
219 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
220 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
221 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
222 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
223 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
224 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
225 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
226 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
227 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
228 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
229 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
230 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
231 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
232 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
233 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
234 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
235 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
236 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
237 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
238 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
239 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
240 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
241 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
242 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
243 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
244 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
245 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
246 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
247 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
248 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
249 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
250 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
251 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
252 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
253 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
254 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
255 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
256 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
257 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
258 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
259 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
260 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
261 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
262 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
263 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
264 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
265 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
266 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
267 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
268 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
269 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
270 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
271 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
272 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
273 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
274 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
275 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
276 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
277 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
278 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
279 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
280 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
281 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
282 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
283 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
284 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
285 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
286 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
287 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
288 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
289 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
290 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
291 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
292 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
293 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
294 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
295 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
296 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
297 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
298 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
299 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
300 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
301 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
302 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
303 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
304 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
305 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
306 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
307 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
308 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
309 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
310 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
311 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
312 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
313 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
314 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
315 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
316 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
317 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
318 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
319 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
320 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
321 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
322 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
323 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
324 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
325 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
326 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
327 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
328 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
329 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
330 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
331 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
332 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
333 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
334 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
335 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
336 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
337 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
338 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
339 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
340 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
341 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
342 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
343 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
344 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
345 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
346 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
347 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
348 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
349 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
350 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
351 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
352 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
353 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
354 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
355 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
356 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
357 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
358 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
359 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
360 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
361 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
362 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
363 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
364 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
365 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
366 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
367 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
368 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
369 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
370 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
371 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
372 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
373 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
374 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
375 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
376 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
377 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
378 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
379 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
380 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
381 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
382 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
383 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
384 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
385 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
386 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
387 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
388 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
389 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
390 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
391 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
392 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
393 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
394 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
395 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
396 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
397 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
398 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
399 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
400 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
401 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
402 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
403 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
404 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
405 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
406 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
407 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
408 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
409 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
410 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
411 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
412 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
413 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
414 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
415 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
416 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
417 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
418 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
419 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
420 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
421 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
422 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
423 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
424 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
425 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
426 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
427 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
428 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
429 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
430 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
431 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
432 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
433 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
434 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
435 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
436 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
437 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
438 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
439 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
440 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
441 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
442 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
443 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
444 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
445 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
446 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
447 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
448 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
449 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
450 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
451 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
452 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
453 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
454 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
455 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
456 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
457 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
458 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
459 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
460 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
461 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
462 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
463 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
464 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
465 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
466 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
467 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
468 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
469 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
470 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
471 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
472 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
473 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
474 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
475 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
476 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
477 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
478 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
479 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
480 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
481 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
482 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
483 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
484 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
485 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
486 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
487 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
488 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
489 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
490 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
491 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
492 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
493 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
494 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
495 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
496 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
497 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
498 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
499 1.840e+01 1.474e-01 1.343e+01 | -2.190e+01 | -3.02 1.21
500 2.241e+01 1.516e+01 -1.343e+01 | -3.533e+01 | -5.02 -0.788
********************
-3.01611 1.21166
0.603644 3.39494
15.1631 0.840234
********************
# cf #
ipar = 5
chains = get_time_scale(ipar, use_opt=True)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 2.352e-01 4.195e+00 inf | 3.482e+01 | -5 -4
2 5.082e-02 9.882e-01 1.330e+00 | 3.615e+01 | -4.78 -3.06
3 1.082e-02 6.212e-02 9.096e-02 | 3.624e+01 | -4.86 -3.21
4 1.203e-03 8.126e-03 1.314e-03 | 3.624e+01 | -4.85 -3.25
5 1.371e-04 8.231e-04 1.670e-05 | 3.624e+01 | -4.85 -3.25
********************
-4.8498 -3.25349
0.419524 0.718029
0.000138241 -0.000823084
********************
# gamma #
ipar = 7
chains = get_time_scale(ipar, use_opt=False)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 2.370e+00 1.784e+01 inf | -3.348e+01 | -5 -4
2 3.777e+00 1.307e+01 3.630e+01 | 2.813e+00 | -4.85 -2
3 inf 2.523e+00 1.521e+01 | 1.802e+01 | -4.73 0
4 2.448e+01 2.526e+00 9.248e-01 | 1.895e+01 | -3.92 2
5 4.488e+02 4.570e+00 -1.118e+00 | 1.783e+01 | -1.92 4
6 5.527e+05 4.625e+00 -4.357e-02 | 1.778e+01 | 0.0817 6
7 1.171e+06 4.626e+00 -8.152e-04 | 1.778e+01 | 2.08 8
8 9.438e+04 4.626e+00 -1.494e-05 | 1.778e+01 | 4.08 10
********************
4.08171 10
nan nan
-4.62579 4.62579
********************
/u/home/abzoghbi/soft/etc/python/plag/plag.py:562: RuntimeWarning: invalid value encountered in sqrt
p, pe = tmpp, np.sqrt(np.diagonal(hinv))
# bnorm #
ipar = 10
chains = get_time_scale(ipar, use_opt=True)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 2.846e+00 4.707e+01 inf | 3.113e+01 | -5 -4
2 4.288e-01 1.016e+01 8.766e+01 | 1.188e+02 | -3 -2
3 2.268e-01 3.905e+00 2.619e+00 | 1.214e+02 | -1.71 -2.07
4 3.930e-02 8.188e-01 9.900e-01 | 1.224e+02 | -2.1 -2.14
5 2.801e-03 9.682e-03 3.759e-02 | 1.224e+02 | -2.18 -2.18
6 1.006e-03 3.765e-03 4.736e-05 | 1.224e+02 | -2.18 -2.18
********************
-2.18314 -2.18309
0.356621 0.750248
0.000768923 -0.00376461
********************
# g@0.5 #
ipar = 12
chains = get_time_scale(ipar, use_opt=True)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 1.130e+00 1.393e+01 inf | 1.544e+02 | -5 -4
2 5.587e-01 2.028e+00 2.342e+01 | 1.778e+02 | -3 -2
3 3.114e-02 9.982e-02 1.324e+00 | 1.792e+02 | -3.39 -0.883
4 2.002e-02 1.355e-02 7.561e-04 | 1.792e+02 | -3.38 -0.855
5 1.648e-02 8.965e-03 2.169e-05 | 1.792e+02 | -3.38 -0.872
********************
-3.37709 -0.872319
0.343078 1.2661
-0.00343262 0.00896493
********************
# g@0.9 #
ipar = 14
chains = get_time_scale(ipar, use_opt=True)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 9.403e-01 1.030e+01 inf | 1.997e+02 | -5 -4
2 1.324e-01 3.257e+00 1.191e+01 | 2.117e+02 | -3 -2
3 4.187e-02 5.177e-01 7.965e-01 | 2.124e+02 | -3.4 -2.07
4 2.210e-02 6.397e-02 2.648e-02 | 2.125e+02 | -3.46 -2.16
5 8.062e-03 2.655e-02 2.197e-03 | 2.125e+02 | -3.45 -2.2
6 2.971e-03 9.712e-03 3.140e-04 | 2.125e+02 | -3.45 -2.22
7 1.068e-03 3.532e-03 4.256e-05 | 2.125e+02 | -3.44 -2.23
********************
-3.44475 -2.22792
0.403349 0.839083
-0.000921179 -0.00353154
********************
os.system('mkdir -p results/other_pars')
np.savez('results/other_pars/lor_hist.npz', hist=hist, fit=fit, par_names=par_names)
plt.plot(hist['nh'][2][1][1:], hist['nh'][2][0])
[<matplotlib.lines.Line2D at 0x7fd1a4f2a208>]
d = np.load('results/other_pars/lor_hist.npz')
hist = d['hist'][()]
fit = d['fit']
par_names = d['par_names']
scale_shift = d['scale_shift'][()]
(50000, 2)
q = np.quantile(1./np.exp(hist['pflx'][3][:,1] + scale_shift), [0.5, 0.16, 0.84])
print(q[0], q[1]-q[0], q[2]-q[0])
19.540324055756834 -9.475743146306439 20.324145457800014
q = np.quantile(1./np.exp(hist[‘nh’][3][:,1] + scale_shift), [0.5, 0.16, 0.84])
print(q[0], q[1]-q[0], q[2]-q[0])
q = np.quantile(1./np.exp(hist['cf'][3][:,1] + scale_shift), [0.5, 0.16, 0.84])
print(q[0], q[1]-q[0], q[2]-q[0])
4.831323970781556 -2.9364150632206916 6.039728554021691
fit_4d1: replace PC with PL
os.chdir('%s/%s'%(base_dir, spec_dir))
suff = '4d1'
fit_4d1 = fit_xspec_model('fit_%s'%suff, spec_ids, base_dir)
# plot the result #
par_names = ['xl_nh', 'xl_xi', 'p2flx', 'xh_nh', 'xh_xi', 'nh', 'pflx', 'gam', 'xflx',
'bT', 'bnrm']
fit = fit_4d1
fig = plt.figure(figsize=(12,7))
idx = [0,1,2,3,4,5,7,8,9,10]; iref = 6
for i,ix in enumerate(idx):
ax = plt.subplot(3,len(idx)//3+1,i+1)
plt.errorbar(fit[:,iref,0], fit[:,ix,0], fit[:,ix,1], xerr=fit[:,iref,1],
fmt='o', ms=8, lw=0.5)
ax.set_xlabel(par_names[iref]); ax.set_ylabel(par_names[ix])
plt.tight_layout(pad=0)
# 2nd powerlaw #
ipar = 2
chains = get_time_scale(ipar)
ts = np.log10(1./(np.exp(chains[:,1] + scale_shift) ) )
h1 = np.histogram(chains[:,0], 60)
plt.subplot(121)
h2 = plt.hist(chains[:,1], 60)
plt.subplot(122)
hs = plt.hist(ts, 60)
hist[par_names[ipar]] = [h1[:2], h2[:2], hs[:2], chains]
1 1.721e-01 8.202e+00 inf | -4.139e+00 | -5 -4
2 1.136e-01 5.478e+00 5.872e+00 | 1.733e+00 | -5.86 -3.95
3 5.293e-02 2.231e+00 2.483e+00 | 4.216e+00 | -6.53 -3.81
4 3.209e-02 3.429e-01 4.279e-01 | 4.644e+00 | -6.87 -3.62
5 1.015e-02 6.647e-02 2.590e-02 | 4.670e+00 | -6.96 -3.5
6 2.714e-03 1.782e-02 1.611e-03 | 4.672e+00 | -6.97 -3.47
7 7.214e-04 4.752e-03 1.122e-04 | 4.672e+00 | -6.97 -3.46
8 1.915e-04 1.262e-03 7.870e-06 | 4.672e+00 | -6.97 -3.46
********************
-6.97462 -3.45557
0.429131 0.708857
-0.00016565 0.00126185
********************
q = np.quantile(1./np.exp(chains[:,1] + scale_shift), [0.5, 0.16, 0.84])
print(q[0], q[1]-q[0], q[2]-q[0])
6.633923154126462 -3.8989064638560604 8.319376812510656
fit_4c1: force low xi for 1,2 and explore xi variations
os.chdir('%s/%s'%(base_dir, spec_dir))
suff = '4c1'
fit_4c1 = fit_xspec_model('fit_%s'%suff, spec_ids, base_dir)
# plot the result #
par_names = ['xl_nh', 'xl_xi', 'p2flx', 'xh_nh', 'xh_xi', 'nh', 'pflx', 'gam', 'xflx',
'bT', 'bnrm']
fit = fit_4c1
fig = plt.figure(figsize=(12,7))
idx = [0,1,2,3,4,5,7,8,9,10]; iref = 6
for i,ix in enumerate(idx):
ax = plt.subplot(3,len(idx)//3+1,i+1)
plt.errorbar(fit[:,iref,0], fit[:,ix,0], fit[:,ix,1], xerr=fit[:,iref,1],
fmt='o', ms=8, lw=0.5)
ax.set_xlabel(par_names[iref]); ax.set_ylabel(par_names[ix])
plt.tight_layout(pad=0)
# pflx
xarr, xerr = fit[:,6,0], fit[:,6,1]
# xi
yarr, yerr = fit[:,1,0], fit[:,1,1]
plt.errorbar(xarr, yarr, yerr, xerr=xerr, fmt='o')
<ErrorbarContainer object of 3 artists>
X = np.random.randn(200, len(xarr)) * xerr + xarr
Y = np.random.randn(200, len(xarr)) * yerr + yarr
xdat, ydat, xmod, ymod, text = fit_linear_model(X, Y, 'pf_xi', spec_ids)
# pf_xi: spearman r,pvalue: 0.511 0.00754
print(text)
# pf_xi: spearman r,pvalue: 0.511 0.00754
# fit pars: 1.893 +- 0.1365, 20.07 +- 1.388
descriptor pf_xi_x pf_xi_y,+-
-10.8061 -0.404963 0.0997348
-10.7843 -0.363537 0.0971211
-10.7625 -0.322297 0.0945289
-10.7407 -0.281056 0.0919601
-10.7189 -0.239941 0.0894165
-10.6971 -0.19905 0.0869006
-10.6753 -0.157518 0.0844146
-10.6535 -0.117419 0.0819614
-10.6317 -0.0765933 0.0795439
-10.6099 -0.0349582 0.0771657
-10.5881 0.00621111 0.0748303
-10.5663 0.0484322 0.0725419
-10.5445 0.0887713 0.0703051
-10.5227 0.130923 0.068125
-10.5009 0.17165 0.0660072
-10.4791 0.2113 0.0639579
-10.4573 0.252881 0.061984
-10.4355 0.294765 0.0600927
-10.4137 0.336772 0.0582922
-10.3919 0.378032 0.0565912
-10.37 0.418102 0.0549988
-10.3482 0.459333 0.0535247
-10.3264 0.500512 0.0521791
-10.3046 0.540325 0.050972
-10.2828 0.580577 0.0499135
-10.261 0.620525 0.0490133
-10.2392 0.662218 0.0482801
-10.2174 0.705674 0.0477218
-10.1956 0.745523 0.0473444
-10.1738 0.786374 0.0471524
-10.152 0.82581 0.0471479
-10.1302 0.867496 0.0473312
-10.1084 0.910311 0.0476998
-10.0866 0.951733 0.0482498
-10.0648 0.992384 0.0489748
-10.043 1.03392 0.0498673
-10.0212 1.07529 0.0509185
-9.99939 1.11537 0.0521188
-9.97758 1.15681 0.0534582
-9.95578 1.19784 0.0549264
descriptor id pf_xi_xd,+- pf_xi_yd,+-
1 -10.8061 0.00565998 -0.993889 0.100214
2 -10.778 0.00335872 -0.481052 0.310682
3 -10.7922 0.00696853 -0.375095 0.11419
4 -10.0709 0.00346941 1.47806 0.150863
5 -10.0728 0.00438831 1.37328 0.0677261
6 -9.9961 0.0021622 1.21713 0.102057
7 -10.7202 0.00660506 -0.179783 0.231239
8 -10.4155 0.00661477 1.31811 0.148171
10 -10.1376 0.00947865 1.09424 0.185907
11 -10.136 0.00519688 1.08682 0.136444
12 -9.99641 0.0054289 1.1121 0.0496004
13 -10.3636 0.0086133 1.13198 0.358864
15 -10.0906 0.00790318 1.52834 0.14184
16 -10.3755 0.00606473 0.614552 0.201328
17 -10.2757 0.00767961 0.600153 0.46684
18 -10.4052 0.00531393 1.12288 0.128568
19 -10.324 0.00990581 -0.582264 0.573452
20 -10.1783 0.00536644 -0.159649 0.28637
21 -10.156 0.00345762 -0.837471 0.183429
22 -9.99302 0.00625617 0.494651 0.187846
23 -9.95578 0.00465043 1.14026 0.0915122
24 -10.0624 0.00567419 1.22119 0.0834203